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SUMMARY

In this paper, we describe some existing slope limiters (Cockburn and Shu’s slope limiter and Hoteit’s
slope limiter) for the two-dimensional Runge–Kutta discontinuous Galerkin (RKDG) method on arbitrary
unstructured triangular grids. We describe the strategies for detecting discontinuities and for limiting
spurious oscillations near such discontinuities, when solving hyperbolic systems of conservation laws by
high-order discontinuous Galerkin methods. The disadvantage of these slope limiters is that they depend
on a positive constant, which is, for specific hydraulic problems, difficult to estimate in order to eliminate
oscillations near discontinuities without decreasing the high-order accuracy of the scheme in the smooth
regions. We introduce the idea of a simple modification of Cockburn and Shu’s slope limiter to avoid
the use of this constant number. This modification consists in: slopes are limited so that the solution at
the integration points is in the range spanned by the neighboring solution averages. Numerical results are
presented for a nonlinear system: the shallow water equations. Four hydraulic problems of discontinuous
solutions of two-dimensional shallow water are presented. The idealized dam break problem, the oblique
hydraulic jump problem, flow in a channel with concave bed and the dam break problem in a converging–
diverging channel are solved by using the different slope limiters. Numerical comparisons on unstructured
meshes show a superior accuracy with the modified slope limiter. Moreover, it does not require the choice
of any constant number for the limiter condition. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The success of the discontinuous Galerkin methods in approximating various physical prob-
lems, notably hyperbolic systems of conservative laws, has attracted the hydraulic engineering
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communities to explore the benefits of this approach [1–4]. One favorable property of the discon-
tinuous Galerkin methods is that they conserve mass at the element level in a finite element
framework. Consequently, they inherit the flexibility of finite elements in handling complicated
geometries and require a simple treatment of boundary conditions and source terms to obtain
high-order accuracy.

First-order schemes are the only approaches that maintain a monotonic solution structure at
discontinuities. Moreover, numerical diffusion due to upwinding is big enough to keep the scheme
stable [5–7]. Unfortunately, these schemes represent the solution with an excessive amount of
dissipation. High-order numerical schemes produce spurious oscillations near discontinuities, which
may lead to numerical instabilities and unbounded computational solutions. Even if the oscillations
are less severe, they produce non-physical solutions, such as negative water depths, which is
unacceptable. In such a case, the use of an appropriate slope limiter is crucial to ensure the stability
of the method.

In one-dimensional space, discontinuous finite elements can be interpreted as a generalization of
high-order Godunov finite differences [8–11]. Such high resolution schemes are usually stabilized
using some form of TVD limiters [12, 13] so that spurious oscillations can be avoided without
destroying the high-order accuracy of the schemes. One commonly used technique is the Van
Leer’s MUSCL slope limiter [11].

In multi-dimensional spaces, the Runge–Kutta discontinuous Galerkin (RKDG) method is still
facing difficulties to attain the same degree of accuracy as in the one-dimensional case, especially
on unstructured meshes. The troublesome part is the construction of appropriate multi-dimensional
slope limiters that preserve the accuracy of the scheme. Consequently, a great deal of effort has
been oriented for the construction of genuine multi-dimensional slope limiters that can eliminate
unphysical oscillations without adding excessive numerical viscosity.

Cockburn and Shu [1, 2, 14, 15] extended the Van Leer’s MUSCL slope limiter to the so-called
generalized slope limiter where a (k+1)th-order of accuracy is achieved in smooth regions by
using the DG method with polynomials of degree k for the spatial discretization and a special
(k+1)th-order explicit Runge–Kutta method for temporal discretization. The generalized slope
limiter does not totally smear oscillations near shocks, but it preserves the accuracy of the scheme
in smooth regions. Thus, the resulting scheme is not TVD; however, it satisfies a TVB property.

Hoteit [16] and Hoteit et al. [17] concentrated on a genuinely multi-dimensional slope limiter in
the sense that it does not require any operator splitting. This slope limiting operator was introduced
by Chavent and Jaffré [18] as a generalization of Van Leer’s MUSCL limiter [11]. The main idea
of this new reconstructing and limiting technique follows a well-known approach where local
maximum principle is defined by enforcing some constraints on the reconstruction of the solution,
as the mass conservation.

In this work, we introduce a simple modification of Cockburn and Shu’s slope limiter for the
solution to the two-dimensional shallow water equations on arbitrary unstructured triangular grids.
The main idea of this modification and limiting technique is to change the limiter condition to avoid
the use of a constant positive number, which can be difficult to fix for specific hydraulic problems.
Therefore, slopes are limited so that the solution at the integration points is in the range spanned
by the neighboring solution averages. Numerical tests on the idealized dam break problem, the
oblique hydraulic jump problem, flow in a channel with concave bed and the dam break problem
in a converging–diverging channel show that the modified slope limiter can eliminate unphysical
oscillations and that the high order of the scheme is preserved in the smooth regions.
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IMPROVEMENT OF CLASSICAL SLOPE LIMITERS 425

The outline of the remainder of the paper is as follows. In Sections 2 and 3, we describe the
mathematical model and the numerical scheme, respectively. Section 4 presents some existing
slope limiter and the modified slope limiter. Computational results on a variety of test cases are
presented in Section 5 with conclusions following in Section 6.

2. MATHEMATICAL MODEL

The two-dimensional depth-integrated shallow water equations are obtained by integrating the
Navier–Stokes equations over the flow depth with the following assumptions: uniform velocity
distribution in the vertical direction, incompressible fluid, hydrostatic pressure distribution and
small bottom slope. The continuity and momentum equations are

�U
�t

+ �E
�x

+ �G
�y

= S (1)

in which

U =
⎛⎜⎝ h

hu

hv

⎞⎟⎠ , E=
⎛⎜⎝ hu

hu2+gh2/2

huv

⎞⎟⎠ , G=
⎛⎜⎝ hv

huv

hv2+gh2/2

⎞⎟⎠
and

S= S0+S f =
⎛⎜⎝ 0

ghS0x

ghS0y

⎞⎟⎠+
⎛⎜⎝ 0

−ghS f x

−ghS f y

⎞⎟⎠ is the source term

where u and v are the velocity components in the x and y directions, respectively; h is the water
depth; g is the acceleration due to gravity; (S0x , S0y) are the bed slopes in the x and y directions
and (S f x , S f y) are the friction slopes in the x and y directions, respectively. In this study, the
friction slopes are estimated by using Manning’s formula:

S f x = n2Mu
√
u2+v2

h4/3
, S f y = n2Mv

√
u2+v2

h4/3

where nM is Manning’s roughness coefficient.

3. NUMERICAL APPROXIMATION

Weconsider a finite element discretization of the field of calculation�=⋃M
i=1 Ki , where Ki is a trian-

gular element.We describe the space and temporal approximations below, and the results of stability.
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3.1. Space discretization

Let V = L2(�×[0,∞[) be the space of the solutions of Equation (1), and let the approximate
space V k

h ⊂V be defined by

V k
h ={v∈V/v/Ti ∈ Pk, i=1, . . . ,M}

where PK is the space of the polynomials of degree k (k=1,2, . . .). Consequently, the solutions
v are discontinuous from a triangle to another. Subsequently, we will fix k=1. In order to build a
solution Uh ∈V 1

h , we multiply Equation (1) by a test function vh(x, y)∈V 1
h , and we integrate on

each triangle K . The obtained system is written for Uh =U/K

d

dt

∫
K
Uh(x, y, t)vh(x, y)dK +

∫
K

∇F(Uh(x, y, t))vh(x, y)dK

=
∫
K
S(Uh(x, y, t))vh(x, y)dK (2)

where F=(E,G) and after integration by parts, we obtain

d

dt

∫
K
Uh(x, y, t)vh(x, y)dK =

∫
K
F(Uh(x, y, t)).∇vh(x, y)dK

−
∫

�K
F(Uh(x, y, t)).nkvh(x, y)d�

+
∫
K
S(Uh(x, y, t))vh(x, y)dK (3)

Here nk =(nx ,ny) is the unit vector outward normal to the element boundary � of the finite
element K .

The approximated variable Uh can be expressed as a sum of the products of discrete variables
Ui and shape functions �i

Uh(x, y)=∑
i
Ui�i (x, y) (4)

Using the standard Galerkin approach, shape functions and test functions are identical. Rewriting
Equation (3), the discontinuous Galerkin space discretization can be summarized by a system of
ordinary differential equations as

d

dt
MUh = Lh,U (Uh) (5)

where M is the mass matrix and Lh is an operator describing the spatial discretization.
By using orthogonal shape functions, the mass matrix M in the linear equation system (5)

becomes diagonal. For triangular elements, a linear shape function can be obtained by choosing a
function that takes the value of 1 at the midpoint mi of the i th edge of a triangle and the value
of 0 at the midpoints of the other two edges. Thus, the diagonal mass matrix can be expressed as
follows:

M=|K |diag( 13 , 1
3 ,

1
3 ) (6)
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The integrals are approximated by a three-midpoint rule for the triangles and a two-point Gauss
integration for the line integrals [19].

3.2. Numerical flux

The approximation of the numerical flux for the discontinuous Galerkin method is identical to
the approximated solution to a Riemann problem according to finite-volume methods. By using
linear or higher subcell resolution for higher-order discontinuous Galerkin methods, the scheme
gets less sensitivity to the choice of the numerical flux than the Godunov-type methods. In that
case, a simple Lax–Friedrich flux gives good results:

F(UL,UR) ·n= 1
2 [(F(UL)+F(UR)) ·n−amax(UR−UL)] (7)

where amax=max(|a1|, |a2|, |a3|), and ak (k=1, . . . ,3) are the eigenvalues of the Jacobian matrix:

Ã= �(F ·n)

�U
=

⎡⎢⎢⎣
0 nx ny

(c2−u2)nx −uvny 2unx +vny uny

(c2−u2)ny−uvnx vnx unx +2vny

⎤⎥⎥⎦
and c=√

gh is the wave celerity.

3.3. Time integration

The second-order accurate, two-stage TVD Runge–Kutta schemes of Cockburn and Shu [2] are
employed in this work. An optimal second-order TVD Runge–Kutta method is given by

U 1
h = Un

h +dt ·Lh,U (Un
h )

Un+1
h = 1

2 (U
n
h +U 1

h +dt ·Lh,U (U 1
h ))

(8)

Since the TVD Runge–Kutta method is an explicit scheme, the time step dt must be selected based
on the Courant–Friedrich–Lewy stability criterion. The maximum allowable time step is limited
in this paper by the following criteria:

dt=CFL
|K |∑3

j=1 l j min(u ·nx +v ·ny−c,0)
(9)

where l j is the length of the edge of the cell K and 0<CFL�1 is the Courant number.

4. EXISTING SLOPE LIMITERS

In this section, we briefly review two slope limiters introduced by Cockburn and Shu [2] and by
Hoteit [16] and Hoteit et al. [17] for triangular grids. We restrict the presentation for P1 piecewise
approximation functions on triangular elements. The degrees of freedom are the state values at the
midpoints of the grid edges.
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Figure 1. Slope limiting for triangular elements.

4.1. Slope limiter of Cockburn and Shu

To describe the limiter, we use the same notations as in Cockburn and Shu [2]. For an arbitrary
triangle K0 and its surrounding neighbors Ki , i=1, . . . ,3, the notations bi , i=0, . . . ,3, and mi ,
i=1, . . . ,3, refer, respectively, to the barycenters of the triangles and the midpoints of the edges
within K0 (Figure 1).

Choosing any edge midpoint m1, we obtain

m1−b0=�1(b1−b0)+�2(b2−b0) for some �1,�2∈R+2 (10)

For any linear function uh , the mean gradient can be expressed as

�u(m1,K0)=�1(uh(b1)−uh(b0))+�2(uh(b2)−uh(b0)) (11)

By using the basis functions �i , uh can be expressed over K0 as follows:

uh(x, y)=
3∑

i=1
uh(mi )�i (x, y)=uh(b0)+

3∑
i=1

(uh(mi )−uh(b0))�i (x, y) (12)

First, we compute the quantities:

�i = m̃(uh(mi )−uh(b0),��u(mi ,K0)) for some �>1 (13)

where � is a positive constant number equal to 1.5 and m̃ is the TVB minmod function defined as
follows:

m̃(a1,a2)=
{
a1 if |a1|�M(�x)2

m(a1,a2) otherwise
(14)
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where M is a given positive constant; and m is the minmod function, defined as follows:

m(a1,a2)=
{
s min
1�n�2

|an| if s=sign(a1)=sign(a2)

0 otherwise
(15)

Consequently, reconstruction is carried out according to the following two cases:

1. If
∑3

i=1�i =0, the new midpoint value is given by

uh(mi )=uh(b0)+
3∑

i=1
�i�i (x, y) (16)

2. If
∑3

i=1�i �=0, we compute

pos=
3∑

i=1
max(0,�i ), neg=

3∑
i=1

max(0,−�i ) (17)

and define

�+ =min

(
1,

neg

pos

)
, �− =min

(
1,

pos

neg

)
(18)

Finally, the new midpoint value is given by

uh(mi )=uh(b0)+
3∑

i=1
�̂i�i (x, y) (19)

where

�̂i =�+max(0,�i )−�−max(0,−�i ) (20)

Since the shallow water equations are a system of equations, the limiting must be performed in
the local characteristic variables in the direction of vector m1−b0. The variables are therefore
transformed by T−1 into the characteristic space, where T is the matrix of right eigenvectors of
the following Jacobian:

�U (E(U (b0)),G(U (b0))) · mi −b0
|mi −b0| (21)

4.2. Modified slope limiter of Cockburn and Shu

We have seen that the TVB minmod function defined in Equation (14) depends on the constant
positive number M . The choice of this number depends on the solution to the problem and the
mesh of the domain. This can make it difficult to choose this number to eliminate unphysical
oscillations and preserve the high-order accuracy of the scheme in the smooth regions. In our
work, we introduce here a simple modification in the TVB minmod function to avoid the use of
the constant number M . Slopes are limited so that the solution at the midpoints of the edges is in
the range spanned by the neighboring solution averages:

Umin
K0

�uh(mi )�Umax
K0

for i=1,2,3 (22)

where Umin
K0

, Umax
K0

are the minimum and maximum element averaged solution on the elements
sharing faces with the cell K0, respectively.
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Umin
K0

=min(uh(b1),uh(b2),uh(b3)) and Umax
K0

=max(uh(b1),uh(b2),uh(b3)) and the quantity
�i defined in Equation (13) is expressed as follows:

�i =
{
uh(mi )−uh(b0) if Umin

K0
�uh(mi )�Umax

K0

m(uh(mi )−uh(b0),��u(mi ,K0)) otherwise
(23)

Therefore, the modified slope limiter depends only on the solutions at the neighboring cells and
does not require any choice of specific constant for the limitation, as it is the case in Cockburn
and Shu [2].
4.3. Slope limiter of Hoteit et al.

To describe the slope limiting procedure, let us consider a triangular element K0 surrounded by
its neighborhoods Ki , i=1, . . . ,3 (Figure 1). The aim is to reconstruct the average values ũh(mi )

at the midpoints of the edges. An indispensable condition that must be satisfied is the local mass
conservation. To obey a local maximum principle, some constraints are imposed to ensure that
each reconstruction uh(mi ) is between the cell averages of the two adjacent elements. To have a
less restrictive limiting, the reconstructions uh(mi ) are kept as close as possible to the initial state
values ũh(mi ,K0). The resulting optimization problem to solve is therefore as follows.

For given initial state values (̃uh(m1), ũh(m2), ũh(m3)), find uh(b0) the solution to the problem:

minW ‖W − ũh(b0)‖2, subject to the linear constraints:

W (b0)= 1
3 (uh(m1)+uh(m2),uh(m3))=uh(b0) (24)

(1−�)̃uh(b0)+�min(̃uh(b1), ũh(b0)) � uh(m1)�(1−�)̃uh(b0)+�max(̃uh(b1), ũh(b0))

(1−�)̃uh(b0)+�min(̃uh(b2), ũh(b0)) � uh(m2)�(1−�)̃uh(b0)+�max(̃uh(b2), ũh(b0)) (25)

(1−�)̃uh(b0)+�min(̃uh(b3), ũh(b0)) � uh(m3)�(1−�)̃uh(b0)+�max(̃uh(b3), ũh(b0))

See Hoteit et al. [16, 17] for the solution to this problem. The author shows that the slope limiter
eliminates completely spurious oscillations with minimal numerical smearing for �=1.

5. NUMERICAL RESULTS

In this section, we validate and compare the different slope limiters described in the previous
section and this on four hydraulic flow problems: the first and the fourth problems are transient
problems in a channel during the break of a dam. The second and the third are steady problems,
which pass from supercritical flow to subcritical flow through a hydraulic jump. The choice of these
four problems for the comparison of the various slope limiters is justified by the following reasons:

• The four problems admit analytical solutions or have experimental data, which makes it
possible to compare the simulated solution with the exact solution or the experimental data
of the problem.

• The flow in the dam break problems is transient; therefore, the variables vary in time, whereas
the flow in the other two problems is steady.

• The solution to these problems contains shocks and discontinuities.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:423–442
DOI: 10.1002/fld



IMPROVEMENT OF CLASSICAL SLOPE LIMITERS 431

Figure 2. Definition of the dam break problem.

5.1. Test case 1: dam break problem

We consider a horizontal channel of width B=10m and length L=200m. The bed of the channel
is smooth; therefore, there is no friction effect on the flow. The dam is located at the middle of the
channel, and at instant t=0, the dam is completely removed and water is slackened in the form of
two waves; one moves upstream and the other towards the downstream (Figure 2). The problem
domain was triangulated into 672 cells and the computational model was run up to 3 s after the
dam break.

In this problem, we are interested in the simulation of the flow during the break of the dam. The
initial conditions of the flow are zero flow discharge everywhere in the channel, and a discontinuous
water depth at the dam. The water depth at the upstream of the dam is fixed at hupstream=10m,
and the water depth at the downstream of the dam varies in order to change the nature of the
flow. Since the channel is closed, the flow is reflective at the upstream and the downstream of the
channel.

Two cases are considered in order to show the robustness of the slope limiters. In the first case,
the flow is subcritical everywhere and therefore the Froude number is lower than 1. In this case,
the downstream water depth must be selected so that the depth ratio hdownstream/hupstream is equal
to or greater than 0.5m (hdownstream=5m). Figure 3 shows the water depth results obtained by
the different slope limiters.

In the second case, the flow is gradually varied; therefore, it passes from subcritical flow to
supercritical flow and inversely. In this case, the downstream water depth must be selected so that
the depth ratio hdownstream/hupstream is lower than 0.5m (hdownstream=1m). Figure 4 shows the
water depth results obtained by the different slope limiters.
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Figure 3. Water depth predicted for the dam break problem (subcritical case): (a) Cockburn and Shu’s
slope limiter and (b) Hoteit’s slope limiter and the modified slope limiter.

Table I shows the relative error in L2 norm between the solutions obtained by the different
slope limiters and the exact solution for the two cases (subcritical and supercritical). According to
Figures 3 and 4, we note that the different slope limiters give similar results in the smooth regions,
but notable differences in accuracy are exhibited between these limiters in the regions where the
solution is discontinuous. Regarding the results obtained by Cockburn and Shu’s slope limiter, it
appears that it is not easy to estimate the constant parameter M for the limitation in order to obtain
high-order accuracy of the scheme. For a small value of M (M=0.01) the slope limiter eliminates
oscillations without preserving the high-order accuracy of the scheme. While for a large value of
M (M=1) the solution is in good agreement in the smooth regions, oscillations appear in the
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Figure 4. Water depth predicted for the dam break problem (supercritical case): (a) Cockburn and Shu’s
slope limiter and (b) Hoteit’s slope limiter and the modified slope limiter.

discontinuity regions. For M=0.1, the slope limiter gives better results. On the other hand, the
modified slope limiter performs almost as well. It eliminates the oscillations near discontinuities
and preserves the high-order accuracy of the scheme. Moreover, it avoids the difficulty of choosing
a constant parameter for limitation. The slope limiter of Hoteit et al. gives satisfactory results.

5.2. Test case 2: oblique hydraulic jump problem

The oblique hydraulic jump is induced by means of an interaction between a supercritical flow
and a converging wall deflected through an angle �=8.95◦. The shock wave is formed with

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:423–442
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Table I. Test case 1: L2 relative errors of water depth.

L2 error in %

Slope limiter Subcritical case Supercritical case

Cockburn’s limiter (M=0.01) 2.29 3.81
Cockburn’s limiter (M=0.1) 1.26 2.41
Cockburn’s limiter (M=1) 1.68 2.66
Hoteit’s limiter 1.93 3.56
Modified limiter 0.94 2.11

Figure 5. (a) Definition of problem domain for oblique hydraulic jump and (b) the unstructured
mesh for oblique hydraulic jump.
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Table II. Test case 2: L2 relative errors of water depth and velocity.

L2 error in %

Slope limiter Water depth Velocity

Cockburn’s limiter (M=0.01) 4.15 0.61
Cockburn’s limiter (M=0.1) 2.12 0.26
Cockburn’s limiter (M=1) 2.42 0.39
Hoteit’s limiter 3.20 0.42
Modified limiter 1.69 0.19

an angle �. The definition of the problem domain and a schematic diagram of the induced
shock front appear in Figure 5(a). The computational domain was triangulated into 1200 cells
(Figure 5(b)).

The initial and inflow conditions are the height h0=1m, velocity u0=8.57m/s and v0=0m/s
(corresponding to a Froude number of 2.74). Fixed boundary conditions are applied at the upstream
boundary. Transmissive boundary conditions are imposed at the downstream boundary and slip
no-pass boundary conditions at the channel walls. The resulting steady-state flow should be purely
supercritical and divided into two regions by an oblique hydraulic jump at an angle of �=30◦
to the upstream flow. Downstream of this jump, the exact solution is given by h=1.5m, |V |=
7.9556m/s [20].

The quantitative comparison of relative errors in L2 norm between the computed results and
the analytical solution is shown in Table II. The comparisons of water surface profile and velocity
plot along the longitudinal section line (‘CD’ shown in Figure 5(b)) are represented in Figures 6
and 7, respectively. In the same manner as for the dam break problem, the results indicate that
Cockburn and Shu’s slope limiter requires a good estimation of the constant parameter M in order
to obtain high-order accuracy. On the other hand, the results obtained by the modified slope limiter
are slightly better than the others. Moreover, the modified slope limiter avoids the difficulty of
choosing any constant parameter.

5.3. Test case 3: flow in a rectangular channel with concave bed

In this section, we consider a hydraulic problem of a flow in a rectangular prismatic channel where
the bed has a non-regular geometrical form. The bed of the channel is concave; it has the shape
of a bump as indicated in Figure 8.

The length of the channel is 1 km and its width is 1m. In this example, there are no friction
effects. The bump of the bed starts at x=125m and finishes at x=875m. The mathematical
expression of the bed is given by

z(x)=4.75sin2
(
x−125

750
�

)
(26)

where z represents the level of the bed compared with a fixed constant altitude, and x is the
longitudinal distance. In this example, the flow is subcritical at the upstream, reaches its critical
mode at the top of the bump, passes to supercritical mode and finishes in subcritical mode through
a hydraulic jump just before the end of the bump.
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Figure 6. Comparison of the water depth profiles along the longitudinal section line
(‘CD’ shown in Figure 5): (a) Cockburn and Shu’s slope limiter and (b) Hoteit’s

slope limiter and the modified slope limiter.

For the boundary conditions, we imposed a flow discharge Q=20m3/s at the upstream of the
channel and a water depth h=7m at the downstream of the channel. The physical domain is
discretized into 3422 triangular cells. The calculated steady-state water surface profiles along the
channel centerline are compared with the analytical solution to the problem [21] in Figure 9. In
Table III, the relative errors in L2 norm of the different slope limiters are compared.

The different slope limiters give similar results in the regions where the solution is smooth but
a notable difference in accuracy is exhibited between these limiters in the discontinuity regions.
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Figure 7. Comparison of the velocity profiles along the longitudinal section line (‘CD’ shown in Figure 5):
(a) Cockburn and Shu’s slope limiter and (b) Hoteit’s slope limiter and the modified slope limiter.

For Cockburn and Shu’s slope limiter, the constant parameter M is difficult to choose in order
to obtain good results. In this example, we can see that Cockburn and Shu’s slope limiter does
not give good results for M=0.1 as in the above examples. The high order of the scheme is not
preserved in the discontinuity regions. It is also quite the same case for the slope limiter of Hoteit
et al. For M=1, the results obtained by Cockburn and Shu’s slope limiter are very close to the
analytical solution to the problem. The slope limiter eliminates oscillations near discontinuities and
preserves the high-order accuracy of the scheme. By choosing M too large (M=2), oscillations
appear in the discontinuity regions. The results obtained by the modified slope limiter are also in
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Figure 8. Concave bed of the channel.

good agreement with the analytical solution. The advantage of this modified slope limiter is that
it gives high-order accuracy and does not require the estimation of any constant number.

5.4. Test case 4: dam break in a converging–diverging channel

In this example, a dam break wave propagation through a channel constriction is studied. The
advancing front is partially reflected by the walls of the contraction producing a smooth front
downstream of the channel. Subcritical and supercritical flows are produced along the channel.
The geometry of the model is detailed in Figure 10. It consists of a rectangular channel (19.3m
long, 0.5m wide). The dam is located 6.1m downstream of the first section of the channel. The
first constriction section is situated 7.7m downstream of the dam. The constriction is 1m long and
0.1m wide and forms a 45◦ angle with the channel walls. The bottom is flat.

Initial conditions are still water steady state with 0.3m water depth upstream the dam and
0.25m downstream. Boundary conditions are solid walls except at the outlet that is considered
free. Manning coefficient is 0.01. The mesh uses 10 578 triangular cells.

Figure 11 shows the comparison between the experimental data and the numerical results of
the water depth time evolution during 10 s at the three gauging points S1, S2 and S3. As shown
in Figure 10, S1 is situated before the constriction and we will see the arrival of the dam break
front and the reflected front produced in the walls of the constriction. S2 is at the middle of the
constriction and there we can only see the arrival of a smoother front and finally S3 is after the
constriction. The relative errors in L2 norm between the results obtained by the different slope
limiters and the experimental data are listed in Table IV.

According to Figure 11, the slope limiter of Cockburn and Shu is not able to deal with strong
discontinuities for a small value of M (M=0.1) and the high order of the scheme is not preserved.
By choosing M=1, we find that the results are in good agreement with the experimental data. For
large value of M (M=2), oscillations appear in the discontinuity regions. However, the modified
slope limiter gives the best agreement compared with the experimental data. It is clear that the
results obtained by the modified slope limiter are also close to those obtained by Cockburn and
Shu’s slope limiter for the value of M equal to 1, but as said previously, the advantage of this
limiter is that it avoids the difficulty of choosing the constant parameter M . The slope limiter of
Hoteit et al. eliminates oscillations without preserving the high-order accuracy of the scheme as
the modified slope limiter does.
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Figure 9. Comparison between the analytical solution and the numerical solution of the water depth:
(a) Cockburn and Shu’s slope limiter and (b) Hoteit’s slope limiter and the modified slope limiter.

Table III. Test case 3: L2 relative errors of water depth.

Slope limiter L2 error in %

Cockburn’s limiter (M=0.1) 3.68
Cockburn’s limiter (M=1) 0.77
Cockburn’s limiter (M=2) 1.63
Hoteit’s limiter 2.42
Modified limiter 0.54

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:423–442
DOI: 10.1002/fld



440 R. GHOSTINE ET AL.

Figure 10. Geometry of the physical model.

Table IV. Test case 4: L2 relative errors of water depth at
the three gauging points S1, S2 and S3.

L2 error in %

Slope limiter S1 S2 S3

Cockburn’s limiter (M=0.1) 3.26 3.31 1.39
Cockburn’s limiter (M=1) 0.93 0.88 0.46
Cockburn’s limiter (M=2) 1.29 1.48 1.48
Hoteit’s limiter 2.19 2.45 1.08
Modified limiter 0.65 0.76 0.34

6. CONCLUSION

In this paper, two existing slope limiters for a two-dimensional, high-order RKDG method on
unstructured triangular meshes (Cockburn’s slope limiter and Hoteit’s slope limiter) are described.
The disadvantage of these slope limiters is that the limiter condition depends on a constant number.
The choice of this number is sometimes not simple to completely eliminate oscillations near discon-
tinuities and preserve the high-order accuracy of the scheme. A simple modification of Cockburn’s
slope limiter is introduced to avoid the use of this number. Therefore, the limiter condition depends
only on the neighboring solution averages. Four hydraulic problems of discontinuous solutions of
two-dimensional shallow water are solved by the RKDG method with the different slope limiters
quoted above. Verifications of all the numerical results are made by comparison with analytical
solutions or experimental data. Based on solving the idealized dam break problem, the oblique
hydraulic jump problem, flow in a channel with concave bed and the dam break problem in a
converging–diverging channel, it can be concluded that the results of the different slope limiters
perform almost well in the regions where the solution is smooth but a remarkable difference in
accuracy is exhibited between these limiters in the discontinuity regions. On the other hand, it is
not easy to choose the constant number needed in the limitation for Cockburn and Shu’s slope
limiter in order to obtain good results. We have seen that this limiter and the modified slope limiter
perform equally well for such specific value of M . However, if M is chosen too small, Cockburn
and Shu’s slope limiter eliminates oscillations without preserving the high-order accuracy of the
scheme; however, if M is chosen too large, oscillations will appear. In the meantime, the presented
modified slope limiter gives almost the best results, avoids all oscillations and preserves the
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Figure 11. Comparison between the experimental data and the numerical results on the time evolution
during 10 s of the water depth at the gauging points S1, S2 and S3: (a) Cockburn and Shu’s slope limiter

and (b) Hoteit’s slope limiter and the modified slope limiter.
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high-order accuracy of the scheme. Moreover, it avoids the difficulty of choosing a specific constant
for the limitation, as it is the case with the other slope limiters.
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de la sureté des dépots de déchets radioactifs. Thesis, Rennes University, France, 2002.
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